Neo-Carbon Food concept: A pilot-scale hybrid biological–inorganic system with direct air capture of carbon dioxide

نویسندگان

چکیده

The pace at which the human population is growing raises serious concerns related to food security while same time conventional agriculture-based production becoming a major cause of environmental pollution and greenhouse gas emissions. Numerous solutions have been proposed boost among edible microbial biomass considered promising alternative sources feed with lower footprint. This work introduces Neo-Carbon Food concept that pilot-scale hybrid biological–inorganic process suitable for biomass. includes integrated hydrogen by water electrolysis, direct air capture (DAC) carbon dioxide, its subsequent assimilation autotrophic hydrogen-oxidizing bacteria (HOB). in situ electrolysis achieved specific energy consumption just below 100 kWh/kgH2 DAC was around 20 kWh/kgCO2.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Capture of carbon dioxide from ambient air

Carbon dioxide capture from ambient air could compensate for all carbon dioxide emissions to the atmosphere. Such capture would, for example, make it possible to use liquid, carbon-based fuels in cars or airplanes without negatively impacting the climate. We present a specific approach based on a solid sorbent in the form of an anionic exchange resin, that absorbs carbon dioxide when dry and re...

متن کامل

Carbon dioxide capture from atmospheric air using sodium hydroxide spray.

In contrast to conventional carbon capture systems for power plants and other large point sources, the system described in this paper captures CO2 directly from ambient air. This has the advantages that emissions from diffuse sources and past emissions may be captured. The objective of this research is to determine the feasibility of a NaOH spray-based contactor for use in an air capture system...

متن کامل

Carbon Dioxide Capture by Modified UVM-7 Adsorbent

In this study, bimodal meso-porous silica (UVM-7) synthesized and fabricated amino silane modified supports were characterized by powder X-ray diffraction (XRD), N2 adsorption/desorption, transmission electron microscope (TEM), elemental analysis and titration. Capacity of CO2 capture on modified bimodal pore structure silica at 70°C was calculated using breakthrough curves; and it was found th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Cleaner Production

سال: 2021

ISSN: ['0959-6526', '1879-1786']

DOI: https://doi.org/10.1016/j.jclepro.2020.123423